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Representing geometrical knowledge

JAMES A. D. W. ANDERSON

Computational Vision Group, Department of Computer Science, University of Reading, Reading RG6 6AY, UK
(james.anderson@reading.ac.uk)

SUMMARY

This paper introduces perspex algebra which is being developed as a common representation of geome-
trical knowledge. A perspex can currently be interpreted in one of four ways. First, the algebraic perspex
is a generalization of matrices, it provides the most general representation for all of the interpretations of a
perspex. The algebraic perspex can be used to describe arbitrary sets of coordinates. The remaining three
interpretations of the perspex are all related to square matrices and operate in a Euclidean model of projec-
tive space-time, called perspex space. Perspex space di¡ers from the usual Euclidean model of projective
space in that it contains the point at nullity. It is argued that the point at nullity is necessary for a consistent
account of perspective in top-down vision. Second, the geometric perspex is a simplex in perspex space. It
can be used as a primitive building block for shapes, or as a way of recording landmarks on shapes. Third,
the transformational perspex describes linear transformations in perspex space that provide the a¤ne and
perspective transformations in space-time. It can be used to match a prototype shape to an image, even in
so called àccidental' views where the depth of an object disappears from view, or an object stays in the same
place across time. Fourth, the parametric perspex describes the geometric and transformational perspexes
in terms of parameters that are related to everyday English descriptions. The parametric perspex can be
used to obtain both continuous and categorical perception of objects. The paper ends with a discussion of
issues related to using a perspex to describe logic.

1. INTRODUCTION

So far as is possible, this paper sets out to use conven-
tional projective geometry to model the appearance of
objects in images, so that computer vision programs
can see objects. This is entirely possible in bottom-up
vision, where a program explains only the parts of an
object that are physically present in an image, but it is
not possible in top-down vision where a program
brings to the task knowledge of the geometrical struc-
ture of objects that might appear in an image. In this
case, the program might predict the occurrence of
object points, lines, or surfaces that fall exactly in the
same part of the image as some other predicted point,
line, or surface, respectively. This seemingly innocuous
circumstanceöthe occurrence of non-distinct points,
lines or surfacesöseriously undermines the application
of projective geometry to computer vision.The solution
o¡ered here is to add the `point at nullity' to projective
geometry to deal with such cases. Thus projective
geometry, which was obtained from Euclidean
geometry by adding the `line/plane/hyperplane at in¢-
nity' is now made complete by adding the `point at
nullity'. This approach is controversial.

In conventional projective geometry, a projective
space of some dimension is modelled by a Euclidean
space of one more dimension, which can be described
in an augmented system of coordinates called `homo-
geneous coordinates'. However, it is an axiom of this

mathematical model that the zero vectoröthe point at
nullityöis not included. The point at nullity is said to
be punctured from the space. In addition to dealing
with space, this paper also deals with time by the
parsimonious solution of adding a Euclidean time axis
to the spatial axes, giving rise to a Euclidean space-
time. The projective space, which has one more dimen-
sion, and is made complete by including the point at
nullity, is called perspex space because it describes the
whole space of coordinates that a perspex can lie in.

An algebraic perspex is introduced as a generaliza-
tion of arbitrary matrices that can be used to describe
all perspexes. The other three perspexes introduced
here are the geometric, transformational, and para-
metric perspexesöall of which are related to square
matrices. A perspex derives its name from the loose
phrase `perspective simplex'. The geometric perspex is
a simplex in the augmented Euclidean space that
contains the point at nullity, now called `perspex
space'. In our terms, a geometric perspex is the
simplest straight-edged shape that can contain a
volume of space-time. In three and two Euclidean
dimensions, a perspex is a tetrahedron and a triangle,
respectively. Perspex algebra operates in all whole-
numbered dimensions and has a very convenient way
of switching dimensions on and o¡ by using j-
numbers. This means that the transformational
perspex can describe transformations in space-time, in
just space, or in any discrete dimensions whatever. The
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transformational perspex provides the linear transfor-
mations of perspex space which can be manifest as the
general linear (a¤ne) and perspective transformations
of space-time.
The j-numbers, which hide and reveal dimensions,

are intimately related to the j-inverse which annihilates
a perspex by hiding dimensions, until what remains can
be inverted in the sense of matrix algebra.The j-inverse
has a property which can easily be misunderstood. It
provides the unique inverse of a matrix that has been
annihilated according to the assumptions built into the
j-inverse. Thus the j-inverse picks out one, canonical
inverse as a representative of all possible generalized
inverses. If the j-inverse is applied to a non-singular
matrix, then it returns the matrix inverse which is the
only possible, hence unique, inverse.

The parametric perspex describes any square
perspex in terms of easily understood parameters. The
space-time parameters are magnitude, handedness,
shear, rotation, and translation. Perspex space has
additional variability which can be described by scale
factors appropriate to the geometric perspex, or by
focal lengths appropriate to the transformational
perspex. These two natural kinds of parameter are
di¡erent, though both kinds of perspex can be under-
stood in terms of either kind of parameter. It is hoped
that in future a better resolution of these two parame-
terizations will be found, perhaps by adopting just one
focal length and scale factors in the remaining degrees
of freedom.

Perspexes have the property that any matrix can be
represented as a perspex. This means, in particular,
that a perspex can be interpreted as if it were a
geometric, transformational, or parametric perspex.
It also means that any operation, whatever, may be
applied to a perspex and the result will be meaningful
in all three interpretations. This would make it
feasible for a program to search randomly for a
network of interrelated perspexes that identify objects
in images, store geometrical and visual knowledge,
and solve visual and geometrical problems. Of
course, the search for perspex structure need not be
random, there are certain operations and combina-
tions of operations which always retain a simple
meaning. This opens up the possibility of providing
neural nets of perspexes with su¤cient internal struc-
ture to get them started on the long road of visual
learning. Alternatively, it o¡ers the possibility of
designing and implementing very sophisticated
symbolic programs.

Throughout this paper mathematical formalism is
kept to a minimum and the general reader is advised
on which sections may be omitted without risk of
losing sight of the overall discussion. However, nothing
in this paper can be understood without an apprecia-
tion of the algebraic perspex and the j-inverse.

2 . ALGEBRAIC PERSPEX

A perspex is a triple hJl, Amn, Jri. The middle term,
Amn, is a matrix with m rows and n columns. The
matrix may contain real or complex numbers, but only
real matrices are used in this paper. In a departure

from matrix algebra the matrix part of a perspex may
contain no rows and no columns.This matrix is de¢ned
to contain one element, zero, and may be written as A00

or, simply, 0.
Matrix algebra has an identity matrix I that does not

alter any matrix which is multiplied by I. The matrix I
is a diagonal matrix that has ones everywhere on the
major diagonal and zeros everywhere else. Thus the
two-dimensional matrix I is

I � 1 0
0 1

� �
.

By contrast the matrixJ is de¢ned to be a diagonal
matrix which may contain zeros or ones on the major
diagonal. Thus

J3 �
1 0
0 1

� �
J2 �

0 0
0 1

� �
J1 � �1� J0 � �0�.

The pattern of zeros and ones on the major diagonal,
reading from the least signi¢cant bit at top-left to the
most signi¢cant bit at bottom-right, is de¢ned to be the
binary encoding of a j-number that is usually written
in decimal notation. The j-number is shown as a sub-
script to the letter J. Thus J3 has 11 on the major
diagonal and 11!1�20 � 1� 21 � 3. Similarly, J2 has
01 on the major diagonal and 01!0�20�1� 21�2.
Every non-negative binary number describes a j-matrix.

In a perspex hJl, Amn, Jri, the term Jl is the left j-
number, and Jr is the right j-number. The j-numbers
are used to zero whole rows and columns of a matrix.
Where a zero occurs in the binary encoding of the left
j-number the corresponding row is zeroed; where a
zero occurs in the binary encoding of the right j-
number the corresponding column is zeroed. Thus

h5, A, 10i �
1 0 0

0 0 0

0 0 1

264
375 a11 a12 a13 a14

a21 a22 a23 a24
a31 a32 a33 a34

264
375

�

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

26664
37775 �

0 a12 0 a14
0 0 0 0

0 a32 0 a34

264
375.

Notice that there is no need to store the rows and
columns that the j-numbers zero, so a concise encoding
is

h5, A, 10i � 5,
a12 a14
a32 a34

� �
, 10

� �
.

However, it is often useful not to discard the data in
the matrix part of a perspex, so that operations on
perspexes can be undone, or so that rows and columns
of the matrix can be hidden during an operation and
revealed later. Therefore, it is de¢ned that no operation
in perspex algebra discards data zeroed by the j-
numbers, except for the explicit operation c̀ontract
(P)?P', where P is a perspex.

The reader who prefers to skip the following tech-
nical example and subsequent comments need only
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note that all perspexes can be multiplied together
regardless of their dimensions.

A technical example of hiding and revealing parts of
a matrix is to consider the calculation of a perspective
view in space-time. The conventional way of doing this
using homogeneous coordinates (Foley et al. 1987;
Riesenfeld 1981), would apply perspective to the time
axis, resulting in an image inverted in time. This
presents no mathematical problems, but it would be
more natural to require that time is projected without
modi¢cation (orthogonally) regardless of the perspec-
tive applied to space.
Consider a point �xyztw�T, with coordinates (x, y, z) on

the spatialaxes, coordinatetonthetimeaxis,and conven-
tional coordinate w = 1on the augmenting axis. Then a
thin-lens camera, with optical axis conventionally along
thez-axis,wouldapplyaperspective transformationwith
focal ratio ÿ1=f , for a non-zero focal length f. But in
constructing the transformation the time axis is hidden
by setting the fourth bit of the left j-number zero. Thus,
with j-numbers shown inbase ten:

23,

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 ÿ1=f 0 1

266664
377775, 31 23,

x
y
z
t
1

266664
377775, 1

!
1 0 0 0
0 1 0 0
0 0 1 0
0 0 ÿ1=f 1

2664
3775

x
y
z
1

2664
3775 �

x
y
z

1ÿ z=f

2664
3775.

Dividing throughout by the w-coordinate, if non-
zero, gives a geometrically correct perspective view in
space with a redundant, conventional coordinate w = 1:

x
y
z

1ÿ z=f

2664
3775!

x=(1ÿ z=f )
y=(1ÿ z=f )
z=(1ÿ z=f )

(1ÿ z=f )=(1ÿ z=f )

2664
3775�

fx=( f ÿ z)
fy=( f ÿ z)
fz=( f ÿ z)

1

2664
3775.

Setting the fourth bit of the left j-number to unity
then restores the unmodi¢ed time coordinate as
required:

23,

fx= (f ÿ z)
fy=( f ÿ z)
fz=( f ÿ z)

1

2664
3775, 1 ! 31,

fx=( f ÿ z)
fy= (f ÿ z)
fz=( f ÿ z)

t
1

266664
377775, 1 .

One very important consequence of j-numbers is that
all perspexes can be multiplied together, because
matrices can be augmented with zeroed rows or
columns to make them the right size to be conformable
for multiplication. The addition of zeroed rows and
columns has negligible e¡ect on the speed of a
computer algorithm to perform the multiplication,
because these nominal rows and columns are skipped.
This does not involve a deletion of information in the
perspex arguments, so in the following example it is
acceptable not to record the entirely redundant third
row of zeros in the solution. Thus

h2, A, 2ih3, B, 3i �
a11 a12 0
a21 a22 0
0 0 0

24 35 b11 b12 b13
b21 b22 b23
b31 b32 b33

24 35 �
2,

a11 b11 � a12 b21 a11 b12 � a12 b22 a11 b13 � a12 b23
a21 b11 � a22 b21 a21 b12 � a22 b22 a21 b13 � a22 b23

� �
, 3

� �
.

This conformability of perspexes, extended to all
matrix operations, has the extremely important conse-
quence that a computer program that uses perspexes
instead of matrices need not branch to special cases to
deal with data structures of mixed dimensionalityöas
occurs very often in vision where, for example, three-
dimensional space is projected over time onto a two-
dimensional retina in time.
In the section on the j-inverse this advantage is

carried further. A program using perspexes need not
branch in the face of singularities which reduce the
e¡ective dimensionality (rank) of the data. This
remains true even in the extreme case of zero rank
where no data is visible in the image, the correspon-
dence is then given by the null perspex h0, 0, 0i, which
describes the point at nullity.

3. J- INVERSE

The presentation of the j-inverse in this section is
technical, but the numerical example might be more
generally accessible. The j-inverse (Anderson 1996) is a
generalized inverse (Ben-Israel & Greville 1974;
Nashed 1976) that annihilates rows and columns of a
matrix until a matrix inverse can be found.

Given a perspex hJl, Amn, Jri, the j-inverse, denoted
by the superscript `ÿj', resets the j-numbers in the
perspex it is applied to so that the ¢rst d linearly inde-
pendent rows and columns are preserved, the
remainder being zeroed, where d is the rank of the
matrix. The perspex inverse is computed by interchan-
ging the left and right j-numbers and setting the
matrix part of the perspex inverse to the matrix
inverse if d 6� 0, or setting the matrix part to 0 if
d = 0 .

In general,

hJl, Amn, Jriÿj � hJa, Add, Jbiÿj � hJb,A
ÿ1
dd , Jai,

giving right and left inverses:

hJa, Add , JbihJb, A
ÿ1
dd , Jai � hJa, Id , Jai,

hJb, A
ÿ1
dd , JaihJa, Add, Jbi � hJb, Id , Jbi.

Notice that when Ja � Jb the left and right inverses
are identical. This is the case, for example, if the
original matrix is square and of full rank, that is, non-
singular. Hence, formulas in matrix algebra may be
rewritten in perspex algebra with the same result if the
original matrix is non-singular, but a useful result if
singular. This is vitally important. It means that a
program using perspex algebra need not branch to
di¡erent cases even in the face of singularities.
A numerical example might help to clarify things.

Given:

*

*

*

*

*

*

*

*
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7,

0 1 0 2

0 0 0 0

0 3 0 4

264
375, 15

ÿj

! 5,
1 2

3 4

� �
, 10

� �ÿj

� 10,
ÿ2 1

3=2 ÿ1=2

� �
,5

� �
the right j-inverse is

5,
1 2

3 4

� �
, 10

� �
10,

ÿ2 1

3=2ÿ 1=2

� �
, 5

� �
!

0 1 0 2

0 0 0 0

0 3 0 4

264
375

0 0 0

ÿ2 0 1

0 0 0

3=2 0 ÿ1=2

26664
37775 �

1 0 0

0 0 0

0 0 1

264
375 � Jj

and the left j-inverse is

10,
ÿ2 1

3=2 ÿ1=2

� �
, 5

� �
5,

1 2

3 4

� �
, 10

� �

!

0 0 0

ÿ2 0 1

0 0 0

3=2 0 ÿ1=2

26664
37775

0 1 0 2

0 0 0 0

0 3 0 4

264
375

�

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

26664
37775 � J10.

Note that the matrix Ja is described by the perspex
hJa, I , Jai so Ja ! h0, 0, 0i describes the point at
nullity.

4 . POINT AT NULLITY

Perspex algebra is intended to be used by an unsu-
pervised computer program, especially one controlling
a robot, which seeks to understand the shape and
disposition of objects in space and how they change in
time. This raises a problem which was not envisaged
when projective geometry was ¢rst formalized during
the 15th century in Renaissance Italy (Boyer & Merz-
bach 1989). At that time the problem was to describe
how an image should be drawn in perspective on a
canvas. It was of no importance that two objects might
fall at the same place in the image. In such circum-
stances an artist can see just the physically nearer
object and draws this. The assumption that projective
geometry deals with separate, so called `distinct'
points, lines, and surfaces was formalized in the projec-
tive geometries of the 17th, 18th, and 19th centuries
(Boyer & Merzbach 1989) and survives to this day.
Incidentally, Leonardo daVinci's andJohannes Kepler's
theories of projection through an aperture are
described in (Lindberg & Cantor 1985).

A robot which has a bottom-up visual sense is in
exactly the same position as a Renaissance artist: non-
distinct lines are not physically possible in an image, so
classical projective geometry is entirely adequate.
However, when a robot seeks to match a geometrical

model of an object in its database to an image of an
object in the world it might very well happen that, say,
two lines on the model line up in the image, becoming
non-distinct. This seemingly innocuous circumstance
seriously undermines the application of projective
geometry to computer vision.

The problem of ¢nding the intersection of two lines
occurs very commonly in computer vision. For example,
the simple task of ¢nding the part of a polyhedral model
that is visible in an image involves cutting the lines of the
model at the edges of the image. It is of course desirable
that the calculation of the intersection of two lines
should be consistent with projective geometry, but this is
not the case for non-distinct lines.

The remainder of this section is highly technical.
Figure 1 shows the plane model of homogeneous coordi-
nates (Greenberg 1994; Riesenfeld 1981; Stol¢ 1991). In
the vocabulary of this paper, this is a model of perspex
space with the plane at w � 1 corresponding to space-
time.The position vector (a, b, c) touches and is perpendi-
cular to a plane that intersects the w � 1 plane in the line
L.Thus, a lineL in space-time canbe describedbyapoint
in perspex space, the position vector (a, b, c).The converse
is also true. The point (a, b, c) in perspex space, can be
described by the lineL in space-time, which occurs at the
intersection of the w � 1 plane with the plane that is
normal to and touches the position vector (a, b, c).This is
anexample of line-pointduality. Suppose, as is commonly
the case in computer vision, that it is desired to ¢nd the
intersection between two lines L1 and L2, described by
their dual points (a1, b1, c1) and (a2, b2, c2). By construc-
tion L1 lies in a plane perpendicular to (a1, b1, c1) and L2

lies in a plane perpendicular to (a2, b2, c2). So the point
which is the intersection of L1 and L2 lies in a plane which
is perpendicular to both (a1, b1, c1) and (a2, b2, c2). In
other words, the intersection lies in a plane whose
de¢ning vector is the cross product of (a1, b1, c1) and
(a2, b2, c2). The cross product produces a result which
is satisfactory for classical projective geometry except
in one caseöwhere L1 � L2, that is, where
(a1,b1,c1) � (a2, b2, c2). In this case the cross product is
(a, b, c) � (a, b, c ) � ( bcÿ bc, acÿ ac, abÿ ab ) �
(0,0,0).This is the zero vector which lies at the point at
nullity and is excluded from the augmented Euclidean
model of classical projective geometry by axiom. In
other words, classical projective geometry cannot ¢nd
the intersection of two non-distinct lines. This result

*

*
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generalizes, by line-point duality, to say that classical
projective geometry cannot ¢nd the intersection of two
non-distinct points, and then generalizes to planes by
non-classical dualities or by geometrical construction.
Thereafter, it generalizes to every conceivable geome-
trical ¢gure.

So if the reader wishes to use projective geometry,
but also wishes to allow the possibility that points,
lines, or planes might overlap in an image, becoming
non-distinct, then the point at nullity enters geome-
trical constructions. But then the reader is caught in a
contradictory position, because the point at nullity is
not part of classical projective space. The reader must
either give up classical projective geometry, or give up
non-distinctness, or adopt a resolution of the problem
such as that o¡ered next.

Figure 2 shows the spherical model of classical
projective space (Greenberg 1994; Riesenfeld 1981;
Stol¢ 1991) with the point at nullity added at the
origin of the sphere, here a circle of radius � � 1. In
the vocabulary of this paper space-time is shown as
the hatched hyperplane tangent to the sphere and
perspex space is the whole space of the ¢gure.

It is important to note that classical projective space,
and indeed perspex space, is unorientable, so the spatial
concepts `left/right', àbove/below', `forward/back',
`inside/outside' and the temporal concept `before/after'
cannot be de¢ned, except in the bottom-up case where
these are resolved on an image, or in the case of full-
rank simplexes (Stol¢ 1991) which would require
direct perception of perspex space.

Each of these concepts is usually de¢ned with
respect to a directed line along which two points are
marked for comparison. Thus a scale is obtained on
which relationships like `left-of/right-of ' and `before/
after' can be de¢ned. The di¤culty is that in classical
projective geometry there are two distinct straight
lines that connect any two distinct points in space-
time and these lines run in opposite directionsöso
that no scale can be constructed. This di¤culty can be
¢nessed in the case of full-rank simplexes (Stol¢ 1991),
but this would require a robot to have direct perception
of perspex space and would deny it the possibility of
using lower dimensional objects, say, lines and points
in a four-dimensional space-time.

It is worth seeing how these two lines arise, because
the construction shows the critical role played by the

point at nullity and hence relates classical projective
geometry to perspex geometry.

Cartesian coordinates in space-time are obtained by
drawing a straight line through the point at nullity, the
origin of the sphere at � � 1, and any other point in
perspex space. The intersection of this line with the
hyperplane at � � 1, de¢nes a point in perspex space
whose non-� coordinates are the Cartesian coordinates
in space-time. For example, a point A, in the hyper-
plane corresponding to space-time, is de¢ned by any
and all points on the line aa0 excluding the point at
nullity. If, contrary to hypothesis, both end points
were at the point at nullity the line would have no
length, would not intersect the hyperplane, and would
lie exactly at the point at nullity. This degeneracy is
considered monstrous in classical projective geometry
and is barred by the topological property that classical
projective space does not contain the point at nullity.
However, this degeneracy is essential to computer
vision as the previous example of the intersection of
non-distinct lines showed.

Now consider the problem of drawing a segment of a
straight line between two distinct points A and B in
space-time. One straight line in space-time is the
projection of all of the diameters of the great circle
that lie between a and b, these also pass between a0 and
b0. This line is called the inner line segment and corre-
sponds to the everyday choice of the line that connects
A and B in space-time. The second straight line is the
projection of all of the diameters of the great circle
between a and b0, these also pass between a0 and b.
This line is called the outer line segment and corre-
sponds to a rather unintuitive line in space-time that
starts at A, moves o¡ in a straight line to a point at
minus in¢nity, instantly jumps to a point at plus in¢-
nity, and moves back in a straight line to B. Thus, it
completes a straight line from A to B. This property of
the double connectivity of points in projective space,
along with the unorientability of projective space, is
well known in mathematics and computer graphics.
The problem is solved in computer graphics by a
process known as clipping, which systematically clips o¡
the outer-line segments between points in space-time
(Foley et al. 1987; Riesenfeld 1981; Stol¢ 1991), thus
restoring orientability. So if clipping is used in classical
projective geometry, or in perspex geometry, then the
concepts `left/right', àbove/below', `forward/back',
`inside/outside' and `before/after' can all be de¢ned.
This is a happy consequence of clipping, but it does
not help solve the problem of the intersection of non-
distinct lines.

Consider, ¢rst, the intersection of two distinct lines
in space-time which can be handled by classical projec-
tive geometry. These lines back-project onto two
distinct great circles of the sphere, which de¢ne two
sets of diameters of the sphere. The intersection of
these two sets is a single diameter whose end points on
the sphere are the intersections of the two great circles.
Classical projective geometry does not contain the
point at nullity, so these points on the sphere are the
only points in consideration. These points project onto
a single point in space-time which is the intersection of
the two distinct lines in space-time.

Representing geometrical knowledge J. A. D. W. Anderson 1133
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Figure 2. Spherical model of projective space.
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Now consider the intersection of two non-distinct
lines in space-time which cannot be handled by clas-
sical projective geometry without introducing serious
di¤culties. The two non-distinct lines back-project
onto the sphere and de¢ne two identical sets of
diameters of the sphere. The intersection of these sets
is the original set, which de¢nes a great circle of the
sphere which projects onto the original line in space-
time. So far, so good for classical projective geometry.
But, the duality theorems of classical projective
geometry (Greenberg 1994; Harris 1992; Stol¢ 1991),
require that the intersection of two lines is a point, and
the result just obtained cannot be represented by
anything other than a line in classical projective
geometry. This need not be a di¤culty. In perspex
geometry the classical operations of projective geo-
metry are rede¢ned in terms of operations on diameters
of the spherical model of projective geometry including
the point at nullity. This always gives rise to a well
formed solution, because set theory is consistent. The
solution is identical to the classical case when distinct
objects in the sphere are considered, but generally has
a di¡erent dimensionality when non-distinct objects
are considered. In the case of two non-distinct lines,
just discussed, the intersection de¢ned in perspex
geometry is a line not some monstrous point as would
be required in classical projective geometry. If this
distinction in the dimensionality of objects is to be
maintained then perspexes must be given a type
de¢ning the dimensionality of the objects they describe.
The point at nullity can arise in two ways. First, by

geometrical construction, say as the intersection of two
distinct diameters. Second, the point at nullity can arise
as a classical error state, as in the cross-product algo-
rithm for computing the intersection of two lines. Here
the correct solution in perspex algebra is to return the
intersection point, typed as a point, if non-nullity, but
to return either of the arguments, typed as a line, if
the algorithm computes the intersection point as
nullity. Thus all of the results and intermediate results
in perspex geometry can be described in the spherical
model of projective space including the point at nullity
and can therefore be given a geometrical interpreta-
tion.

Classical projective geometry deals with distinct
geometrical entities on the sphere of the spherical
model and is a proper subset of perspex geometry
which admits non-distinct geometrical entities in the
sphere and at the point at nullity. So, the reader has
nothing to lose by adopting perspex geometry.

5. GEOMETRICAL PERSPEX

A few technical remarks need to be made about the
geometrical perspex, before practical applications are

discussed. First, the geometrical perspex is de¢ned to
be a square matrix of arbitrary homogeneous coordi-
nates. It may, therefore, contain the zero vectoröthe
point at nullity. Second, the geometrical perspex is put
into canonical form by dividing vectors throughout by
the absolute value of their w-coordinate, if non-zero.
This is a departure from the conventional mathema-
tical scheme (Riesenfeld 1981), and from a computer
graphics scheme (Vanarsdale 1994), but it has the
advantage that it retains all of the information needed
for clipping (Foley et al. 1987), and does not alter a
transformational perspex that describes a linear trans-
formation in space-time. Pentland (1997) describes a
human face recognition system, an early stage of
which is to ¢nd the left and right eye (L,R), nose (N),
and centre of the mouth (M). See ¢gure 3. These land-
marks are used to de¢ne a transformation to bring the
picture of the head into a standard view. But the four
points in homogeneous coordinates, corresponding to
four points in the three-dimensional Euclidean space
of a human head, describe a tetrahedronöa perspex.
Similarly, any triangle composed of three of these four
points de¢nes a tetrahedron with one dimension anni-
hilated, a triangle, which is also a perspex. Pentland's
program takes this two-dimensional route, which
establishes the use of a perspex in image processing
(Garrett & Anderson 1995).

The tetrahedron has the advantage that it describes
the well known Y-junction (tetrahedral junction) ¢rst
used in the Blocksworld programs which are reviewed
in (Boden 1977). The use of j-matrices allows a tetrahe-
dral perspex to have parts annihilated so that, for
example, it lies £at in the plane, turns into aT-junction,
an L-junction, a line, a point, or nothing at all. Thus a
single tetrahedral perspex can be matched to any of
these con¢gurations (¢gure 4).

The tetrahedral perspex is a good candidate for
three-dimensional vision where the sensor provides
depth information directly or computes it from several
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Figure 3. Perspex description of Pentland's face normaliza-
tion.

Figure 4. Views of a tetrahedral perspex and some of its annihilations.
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views using, for example, Longuett-Higgins four-point
algorithm, reviewed in (Marr 1982). But the tetrahe-
dron does not contain enough information to recover
an unannihilated transformation from a single view
using methods related to Roberts's method (Roberts
1965).

Roberts reported the ¢rst computer vision program
to use geometrical models of objects described in homo-
geneous coordinates (Roberts 1965). His method was to
¢nd points in an image that correspond to points on the
model and to express this relationship as a simulta-
neous equation. In order to do this Roberts assumed
that the focal length of the camera is known and that
objects occur at a standard distance. The method is
explained further in (Ballard & Brown 1982). A minor
improvement is made in (Anderson 1992a) so that the
transformational matrix recovered can be corrected by
matrix multiplication if, and when, the true size or
distance of the object is obtained.

Figure 5 is taken from (Anderson 1996) which
contains a worked example of Roberts's method using
the j-inverse. Given the assumptions of known focal
length, standard distance, and a set of corresponding
points on the model and image, the unique transforma-
tion of the model from (a) to (b) is found using either the
j-inverse, or a standard matrix inverse as in Roberts's
work. The standard matrix inverse fails in cases (c) and
(d) because the matrices become singular. Roberts does
discuss the possibility of using an ad hoc method to
obtain solutions when it is known which of cases (c)
and (d) obtains, but this proposal is unlikely to lead to
a general, programmable algorithm. By contrast, the j-
inverse directly computes the j-matrices that are needed
to annihilate parts of the model in (a) so that the
remaining parts can be transformed to match the
image. Thus Roberts's ad hoc method, requiring human
intervention, or detailed programming of every case, or
approximation using singular value decomposition
(SVD; Golub & van Loan 1983), is replaced by the j-
inverse that computes a numerically exact answer for
any matrix.

In the above example a cube was modelled by an
eight-dimensional perspex with one dimension for
each vertex. The perspex was described by an algebraic
perspex corresponding to a matrix and the j-inverse
deleted the unnecessary parts of the model in order to
bring it into correspondence with the image.

A more compact representation of the visible parts
of a cube would be two tetrahedral perspexes with one

point coincident, so that the perspexes describe a trian-
gular prism. This would then form a primitive shape
that could be used in Blocksworld vision programs. In
extreme annihilations the triangular-prism perspex
would describe all of the geometrical forms in ¢gure 4.
In perspective views it would also describes the ¢gures
that arise in the MÏller^Lyer illusion, ¢gure 6. Coinci-
dentally it is the same shape as the winged-edge
polyhedron (Baumgart 1975) which is used in all
modern CAD systems to describe topologically correct
polyhedral models (Ma« ntyla« 1988). Blocksworld might
well repay renewed examination using perspexes.

6. TRANSFORMATIONAL PERSPEX

A few technical remarks need to be made about the
transformational perspex. First, it is de¢ned to be a
square matrix of arbitrary homogeneous coordinates.
It may, therefore contain the zero vector, the point at
nullity. Second, applying the j-inverse twice to the
matrix part of the perspex, excluding the last row and
column, isolates the ¢rst linearly independent rows and
columns of the perspex that correspond to linear trans-
formations of space-time. The linearly dependent rows
and columns are zeroed as recorded in the j-numbers.
This puts the linear part of the transformation into a
canonical form. The whole matrix is put into a cano-
nical form by dividing throughout by the parameter
describing the scale of the augmenting, w-axis, if this
is non-zero. The advantage of using the parameter,
rather than just the element of the matrix in the last
row and column is that this element can be zero, even
when the w-axis has a well de¢ned scale. In any case,
this is a superset of the usual de¢nition, so nothing is
lost by this device.

7. PARAMETRIC PERSPEX

There are very many ways to parameterize the a¤ne
and perspective transformations. Some of these are
reviewed in (Anderson 1992a) and a parameterization
generalized to all dimensions appears in (Vanarsdale
1994). However, only Anderson (1992a,b, 1997; see
matrix below), appears to o¡er a parameterization
which preserves a one-to-one mapping between para-
meters and non-singular transformations. A
parametric perspex is de¢ned to be an arbitrary
square matrix, so the parameterization must be
extended to deal with linearly dependent rows and
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(c)  singular
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Figure 5. General and accidental views of a cube.

Figure 6. The triangular-prism perspex gives rise to
Mu« ller^Lyer ¢gures.
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columns and, in particular, it must allow the zero
vectoröthe point at nullity.

The parameterization shown below is based on the
Givens' orthogonalization (Golub & van Loan 1983),
which is a well-known numerical technique for
describing a matrix as the product of an orthogonal
matrix, describing a rotation and/or re£ection, and an
upper triangular matrix:

h1m1 s1 s2 t1
r�1 h2m2 s3 t2
r2 r3 h3m3 t3
k1 k2 k3 k4

2664
3775.

This leads to a natural set of parameters. The ri terms
are the parameters of plane (two-dimensional) rota-
tions in each combination of two coordinate axesö
shown by the row and column in which the parameter
appears. These terms describe orientations of objects.
Though, in a departure from the Givens algorithm
and previously published modi¢cation of it, the ri
terms should be taken with alternating sign, so that
they preserve the right-hand rule of three-dimensional
rotations and its generalization to higher dimensions
(Vanarsdale 1994). In addition, no constraint applies
between the rotation parameters as was mistakenly
reported earlier.

The mi terms are strictly positive magnitudes that
describe lengths of objects along each coordinate axis.
The ti terms describe translations, that is, changes of
position along each of the coordinate axes.

The si terms describe how an object is sheared in
each of the corresponding rotational planes. Shears
have been misdescribed in the general computer
graphics and computer vision literature, but they are
the transformations which transform a rectangle into a
parallelogram (Anderson 1992a,b). The term hi, with
highest index, here h3, is a parameter +1 that changes
the handedness of an object; it describes re£ection. The
remaining terms and ki, are a little more abstract.

All of the terms hi, except the last one, modify the
last rotation term in their column. Here, h1 modi¢es r2
and h2 modi¢es r3. The modi¢cations arise as follows.
In order to preserve a one-to-one mapping between
rotation parameters and rotational transformations,
only the ri terms in the last row describe a whole rota-
tion, the others describe a semi-rotation. So the hi
parameters, all of which are +1, are used to carry the
semi-rotations in the last row of rotational parameters
into transformations describing a whole rotation. In
this way, all of the rotation parameters take on the
same range, as do all of the handedness parameters.
This is a natural interpretation. The rotations them-
selves are encoded as tangents. Tangents have the
advantage that they cover the whole of the real
number range.

The ki terms described here are simply parameters
describing the scale of the w-axes in the coordinate
interpretation of perspexes. Alternatively the w-parti-
tion could be parameterized as focal lengths, which
would be a natural way to parameterize the transfor-
mational interpretation of perspexes. It remains to be

seen which of these should be regarded as the primary
encoding from which the other is derived.

The parameterization just described is extended to
cover arbitrary square matrices by introducing a cano-
nical form. Speci¢cally, a square matrix is
parameterized by ¢rst putting the matrix in the cano-
nical form of a transformational perspex. The
parametric perspex is then in one-to-one correspon-
dence with the canonical transformational perspex. All
of the parameters in a parametric perspex may take on
any real numbered value, except the magnitude
components. If a parametric perspex has any zero
magnitudes then it is unparameterized to give a
singular transformational perspex, which is then put
into the canonical form of a transformational perspex
and is reparameterized. Thus every square matrix
corresponds to some parametric perspex.

The important properties of the parametric descrip-
tion are that it is in `natural' terms and provides a one-
to-one mapping with the matrix part of a non-singular
transformational perspex as may be recovered by the j-
inverse.

These properties were exploited in (Byne et al. 1996)
with the results shown in ¢gure 7. A robot was used to
obtain a picture of some children's wooden blocks. The
robot was calibrated so that the distance from the
camera to the work bench and the focal lengths of the
camera along each of the horizontal and vertical array
of pixels was known. In addition the correspondence
was given between points on an eight-dimensional
perspex and points found in the image by a model-
based vision program. The blocks were processed
sequentially. For each block the j-inverse was used to
obtain the transformation of a unit cube to the block.
The transformation was then parameterized.The para-
meters were then summed in di¡erent ways to produce
a measure of the èrror' in the recovered transforma-
tion. One measure was the sum of squares of shear
parameters, another was the sum of squares of di¡er-
ences from expected length parameters. The position
of points in the image was then perturbed and the
èrror' terms were minimized by stochastic hill-
climbing which performed as well as a genetic algo-
rithm. In every case the parameters converged to
values close to their true values with no signi¢cant
displacement of the image points as shown by the
black lines surrounding the blocks in ¢gure 7.
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This example shows two kinds of prior knowledge
being deployed, equally e¡ectively, in a robot vision
task. First, the minimization of the shear parameters is
an example of continuous perception favouring the
most rectilinear interpretation of the data. Second, the
minimization of di¡erences from known lengths is an
example of categorical perception favouring the inter-
pretation of the data which comes closest to some
previously known prototypes. Both kinds of perception
are availableöall the programmer need do is provide a
suitable èrror' function. Alternatively, a computer
program could ¢nd appropriate èrror' functions using
a genetic algorithm or neural net, as described in Cli¡
(1997) and Hinton (1997).
A very important practical detail of these experi-

ments is that hundreds or thousands of evaluations
were used during the hill-climbing to optimize a single
parametric description of an object, so, it might be
supposed that the combinatorial explosion contingent
on searching all of the permutations of points on a
model and in the image would be devastating. This is
not so. The j-inverse is exact and the parameterization
is very accurate, so it is reasonable to expect that all of
the symmetries of the correspondences could be found
on a single evaluation. Further, it seems that correspon-
dences which are objectively bad, for example because
they involve cross-overs, yield parameters that are
extremely far from expected values, so these may be
discarded very quickly. Thus the parameterization
appears to o¡er a practical method of obtaining both
continuous and categorical visual perception, along
with detection of all a¤ne and perspective symmetries,
for those visual tasks where candidate landmarks can
be found to bring into correspondence with a model. It
should be remarked that the landmarks need not be
points, the duality theorems of projective geometry
would allow, lines, planes, and in general, hyperplanes
to be substituted for points.

8 . GESTALT PUZZLE

Now that perspexes have been introduced, the reader
is invited to consider a thought experiment in which a
robot seeks to solve a gestalt puzzle. The explanation of
the robot's behaviour is in terms of Palmer's transfor-
mational theory of human visual perception (Palmer
1983), in which an observer searches for regularities in
transformations applied to pictorial elements. However,
Palmer did not have access to all of the a¤ne and
perspective transformations o¡ered by the transforma-
tional interpretation of the perspex, nor did he have
access to the coordinate and parametric interpretations.

Suppose that a robot looks at ¢gure 8 and is
programmed to search for the most concise description
of an image. In Barlow's terms (Barlow 1997), the robot
is programmed to extract as much knowledge as it can
from the ¢gure. How might it operate?

The robot might start by ¢tting a perspex directly to
the triangle in the top-left of the ¢gure and then to
successive triangles in what we see as the top row. The
robot might describe these as a set of four coordinate
perspexes, but would fail to ¢nd any other triangles.
Thus the robot would demonstrate a gestalt of
common form.

If the robot were to assume the ¢rst triangle ¢xed
and apply the j-inverse to the second it would obtain
the transformation which carries the ¢rst triangle into
the second. Assuming the second triangle ¢xed and
applying the j-inverse to the third it would obtain the
same transformation. Proceeding along the row it
would ¢nd that in every case the same transformation
would generate the next ¢gure from its predecessor.
The robot might describe this situation by using one
geometric perspex as the starting position and one
transformational perspex as a generator. It would then
need just one number to indicate the number of times
the generator is to be applied. The robot would then
have deduced a rule for generating an in¢nitely long
sequence of these transformations, thus demonstrating
the gestalt of common fate. The robot would also have
achieved a reduction from four perspexes to two in
order to describe the triangles, which is an increase in
knowledge in Barlow's terms.

If the robot were to examine the next unexplained
object in raster order (the arbitrary order top-left to
bottom-right) it would ¢ndwhat we see as the ¢rst dot of
a group of three. The robot might match this to a
geometric perspex annihilated to apoint andmight then
¢nd all of the other points in the ¢gure, again demon-
strating the gestalt of common form. Proceeding as for
the triangles it might then ¢nd the transformation that
generates a group of three dots from the ¢rst one. The
robot might use three coordinate perspexes to generate
the starting positions of what we see as the two groups of
three dots and the isolated dot. It could then use one
transformational perspex to generate the two series of
three dots. Thus the robot demonstrates the gestalt of
common fatewhen it generates a group of three dots.

The next unexplained object in raster order is a dash.
The robot might encode the groups of three dashes in a
similar way to the dots. That is, as two starting posi-
tions for an annihilated perspex describing a line and
two generators. The robot might then detect that the
generators are identical, perhaps by examining the
perspexes directly. But suppose that the ¢gure is badly
drawn, how might the robot detect that nearly the same
transformation is used as a generator each time? A
simple way would be to take each transformational
perspex and draw it into an image as if it were a
geometric perspex. Measuring the area of overlap
would soon show that the transformations were nearly
the same. Thus the robot might detect this fact by
applying an image processing operation to its own
thoughtsöthe transformational perspexes in its own
`mind's eye'. The robot might perform this operation
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very quickly because the required drawing routines are
supported in hardware in many contemporary
computer workstations. Here the gestalt of common
form in the transformational perspexes gives rise to the
gestalt of common fate in the coordinate perspexes. In
this case the gestalts are in fact identical computations
applied to two di¡erent kinds of perspex.

By a similar viewing of the transformations in its
own `mind's eye' the robot might see, ¢rstly, that the
same transformation carries the ¢rst group of three
dots onto the second group of three dots as carries the
¢rst group of three dashes onto the second. It might go
on to see that the same transformation carries each
group of three things onto the next. Thus, the robot
might use two geometric perspexes to represent the
shapes of the dots and the dashes and two transforma-
tional perspexes to represent the repetition of three
elements in a group, followed by the in¢nite sequence
of alternating groups. The alternation of shape could
be represented by a transformational perspex that
selects the required shapes from an iconic memory
composed of geometric perspexes, for example, by
using re£ection or rotation to visit di¡erent areas of
the icon. The lone dot might be described by a single
geometric perspex.

The robot might go on to recognize the sequence of
dots and dashes as the Morse code for `SOS', now the
international distress signal, `Mayday' (best
pronounced in French). If we were to point at the dots
and dashes and ask the robot to explain what is at this
location in the image we would expect, amongst other
answers,`the international distress signal'. Conversely, if
we were to ask the robot, `where is the international
distress signal?' we would expect that, amongst other
answers, it would indicate the dots and dashes in the
image. This is an example of visual knowledge
(Anderson 1989) being related to linguistic knowledge
of facts. The importance of making a link between
visual and linguistic representations is that we could
question the robot in order to satisfy ourselves as to
what extent it understands what it sees.

The robot might describe the remaining three objects
as annihilations of a cube and might see the common
transformation that carries each ¢gure onto the next,
but it might do rather better than this. If it were to
convert the geometric perspexes of the three views of
the cube into parametric perspexes it would see that
all of the cubes have the same parameter for translation
and that they all have the same parameter for rotation.
It could then go on to generate the in¢nite sequence of
hypercubes that are rotated by 458 in successive planes.
Furthermore, the robot might see that the ¢rst row of
triangles has the same translation and rotation para-
meters. It might then see that all of the ¢gures have
common translation parameters along rows and a
di¡erent common translation parameter down
columns. Thus the parametric interpretation reveals
factors of transformations (parameters) that would
otherwise be con£ated in its perception. The para-
meters have been carefully chosen so that they are
related in a simple way to those that English speakers
use, so that we might establish an e¡ective dialogue
with a robot programmed to use perspexes.

9. DISCUSSION

This section is entirely independent of the previous
sections and contains philosophical speculation which
the reader might prefer to skip.

The geometric, transformational, and parametric
perspexes are all interchangeable, either at random or
in more meaningful ways. This raises the possibility of
constructing self-organizing networks of perspexes that
solve visual and geometrical problems.

Future work is now aimed at developing an interpre-
tation of a perspex as logic, extending earlier work
(Anderson 1995), so that a computer can be
programmed with perspexes to carry out the opera-
tions of perspex algebra discussed in this paper. This
raises an intriguing possibility.

I de¢ne that X is visually conscious of Y if X can see
Y. Thus programs in these proceedings are variously
visually conscious of: wooden bricks; human faces;
hand signs in American Sign Language; and parts of
the human anatomy, including the human brain,
revealed by non-invasive imaging techniques.This de¢-
nition is saved from emptiness by observing that its
force depends on the meaning of s̀eeing' (Swartz
1965). In Leonardo da Vinci's use of the word `seeing'
(Lindberg & Cantor 1985), a stone could be said to
`see' the sun. I would allow that the stone is `visually
conscious', but only to the degree that it can s̀ee'. By
comparison with the s̀eeing' abilities of computer
programs and animals, this is so low as to admit no
more consciousness than would ordinarily be allowed
to a stone.

The gestalt puzzle raises the possibility that a
computer program could be visually conscious of its
own attempts to search for regular and semi-regular
patterns (transformations) of objects in space-time, or
of partial regularities in terms of the parameters of
transformations. If a logical perspex can be developed,
then a computer program could be programmed to be
visually conscious of all of its operations. Such a
program might be programmed to experience qualia
(sensory qualities). For example: the primary sensible
quality that disk access is slower than core access; the
secondary sensible quality that perspexes in the part of
the core tagged as the `frame store' can be shared with
input on a serial keyboard port describing itself as à
human observer', whereas other areas of core cannot
be immediately shared; the vital perception that error
rates in memory vary within well de¢ned bounds, or
are at serious risk of causing program malfunction and
termination.

The implementation of such a program in a robot is
the subject of current research with the objective of
allowing empirical testing of the philosophical ques-
tion,`to what extent is this robot visually conscious?'.

10. CONCLUSION

This paper introduces the algebraic perspex which
describes all perspexes. Three particular perspexes are
introduced. First, the geometric perspex which can be
used as a building block for shapes in space-time, or to
record landmarks on shapes in space-time. The land-
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marks need not be points; the duality theorems allow
points to stand for lines, planes, and hyperplanes.
Second, the transformational perspex which describes
the general linear (a¤ne) and perspective transforma-
tions in space-time.The j-inverse can be used to recover
a transformation that carries a model onto an image
even in singular cases, which arise in the so called àcci-
dental' views, where the depth of an object disappears
from view, or an object stays in the same place over
time. Third, the parametric perspex which can be
used to obtain continuous and categorical perception
of shapes in space-time and can probably be used e¤-
ciently to discover a¤ne and perspective symmetries of
shapes in space-time.

The geometric, transformational, and parametric
perspexes all have the property that every possible
perspex is interpretable in each of the three ways. This
holds out the exciting possibility for a program to build
a random network of interrelated perspexes and to have
it trained by feedback to: identify objects in images
from their geometric structure; describe the movements
and interrelationships between objects in terms of
transformations; and, factor out individual parameters
of a transformation or geometrical shape. The search
for an e¡ective perspex network need not be random,
there are certain operations and combinations of
operations which always retain a simple meaning. This
opens up the possibility of providing neural nets of
perspexes with su¤cient internal structure to get them
started on the long road of visual learning. Alterna-
tively, it o¡ers the possibility of designing and
implementing very sophisticated symbolic programs.
Perspex algebra and perspex geometry are supersets

of matrix algebra and classical projective geometry,
respectively, so the reader has nothing to lose by
adopting perspexes.

It was always exciting working in Geo¡ Sullivan's laboratory.
Geo¡ can never be replaced, but his excitement and spirit of
adventure live on in the laboratory.

This paper has bene¢ted immeasurably from discussions
with Steve Maybank and my co-organizers Horrace Barlow
and Richard Gregory. Magnus Byne's work on our robot
vision system was invaluable. Anthony Worrall and I spent
many hours, years ago, discussing the parameterization. The
perspective simplex was developed while on sabbatical at the
kind invitation of Professor Bernd Neumann of the Arbeits-
bereich Kognitive Systeme, Fachbereich Informatik,
UniversitÌt Hamburg, Germany. The sabbatical was gener-
ously funded by both the Department of Computer Science
and the Research Board at The University of Reading, UK.
Any errors, omissions, or confusions in this paper are

entirely the author's responsibility.
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